UCRL- JC-107018 Rev. 1
PREPRINT

Retire Fortran? A Debate Rekindled

~ David Cann
Lawrence Livermore National Laboratory
Livermore, California

This paper was prepared for submittal to
the Supercomputing 1991 Conference,
Albuquerque, New Mexico
November, 1991

July 24, 1991

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author. :

i B R S o

P

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to any specific
commercial products, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or the University of California. The
views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or the University of California, and shall not
be used for advertising or product endorsement purposes.

Ty

Retire Fortran? A Debate Rekindled

L David Cann
Computing Research Group, L-306
Lawrence Livermore National Laboratory
P.O. Box 808, Livermore, CA 94550
cann@lll-crg.llnl.gov

Abstract

In the May 1984 issue of Physics Today, Jim McGraw
debated David Kuck and Michael Wolfe on the ques-
tion of retiring FORTRAN. They addressed such ques-
tions as: Is FORTRAN the best tool for decomposing
problems for parallel execution? Is FORTRAN the pro-
gramming language we should carry into the 21st cen-
tury? Are there any alternatives? While McGraw ar-
gued forcefully in favor of retiring FORTRAN, concerns
about performance crippled his position. He could
not rebut the claim that only FORTRAN could provide
the performance required for scientific computing. In
this report, we use the current performance of CRAY
SisaL, a functional language for large-scale scientific

computing, to counter that claim. If McGraw had had
our data in 1984, he could have countered what some

say is the only defense in favor of keeping FORTRAN.
The results show that we can move beyond the con-
straints of imperative programming. We can raise the
level of abstraction and retain performance.

1 Introduction and Motivation

In May of 1984, a debate between Jim McGraw
of Lawrence Livermore National Laboratory (LLNL)
and David Kuck and Michael Wolfe of Kuck and As-
sociates, appeared in Physics Today [15]. The subject

-was whether to retire FORTRAN. Seven years have

passed, and we wish reopen the debate and provide
further evidence that FORTRAN is not the sine qua
non of high speed computing.

Many believe that the outstanding investments in
FoRTRAN and the quality of existing FORTRAN com-
pilers is helping to prevent a change in programming
methodologies. Many also feel that support for FOR-
TRAN must continue because the language is familiar
and widely available. Unfortunately, the complexities
of writing correct parallel programs in FORTRAN is a

cause of today’s software crisis. We believe, as did Mc-
Graw in 1984, that increased productivity, generality,
utility, portability, and performance are only possi-
ble if programmers avoid the constraints of impera-
tive languages and adopt a higher level of abstraction.
We must escape the morass of imperative semantics
and attain a level of abstraction that separates the
programmer from the machine, stresses problem def-
inition over the mechanics of solution, and provides
complete information to the compiler.

While Kuck and Wolfe would probably have agreed
with the above statements, they wisely argued that
programmers simply would not use languages that
did not allow them to get the performance they re-
quired. To this McGraw had no counterargument for,
in 1984, FORTRAN and only FORTRAN provided the
performance needed for large-scale scientific comput-
ing. The intent of this report is to reopen the debate
and present further evidence that functional super-
computing is possible. We compare the execution per-
formance of SISAL, a general purpose functional lan-
guage for large-scale scientific computing, and For-
TRAN on a CRAY X-MP/48. The CRAYs remain the
most heavily used machines at our nation’s supercom-
puter centers, and are the machines of choice by most
scientific programmers. Thus it is on these machines
that languages must beat FORTRAN if they are to re-
place it.

For completeness and for the benefit of those read-
ers that are not familiar with the principles of func-
tional computing, the next two sections examine
the functional programming paradigm, discuss its at-
tributes and advantages, and highlight the salient fea-
tures of SisaL. In the remaining sections we illus-
trate the potential inefficiencies of functional comput-
ing, present the most recent performance data for the
CRAY X-MP, discuss areas of improvement, and make
some closing remarks regarding FORTRAN and the fu-
ture of high speed computing.

2 Programming Alternatives

In 1984, McGraw noted that by all indications fu-
ture supercomputers would be multiprocessors. To-
day, most supercomputer users and vendors agree.
But can programmers take advantage of the horse-
power and not sacrifice portability, longevity and cor-
rectness? In this section we highlight the aesthetics of
functional programming and contrast the functional
model to the imperative model of FORTRAN. To be-
gin, we list the desired characteristics of a true parallel
programming language [1]:

1. The language must insulate the programmer
from the underlying machine. Deriving and ex-
pressing a parallel algorithm is hard enough; one
should not have to reprogram it for each new
machine.

2. Parallelism must be implicit in the semantics of
the language. The compilation system should
not have to unravel the behavior of the compu-
tation.

3. When a programmer desires determinancy, the
language should guarantee it. Regardless of the
conditions of execution, a program that realizes
a determinate algorithm should yield the same
results for the same data.

Of the three items, the last is an issue only when
automatic parallelizing compilers are not available and
the programmer is responsible for expressing and man-
aging parallelism. Programmers will make mistakes,
and these mistakes may remain hidden until system
activity changes the rate of execution. This is all
we will say about determinancy, as most parallel ma-
chines support antomatic parallelizing compilers.

Regarding the first two items, however, imperative
languages fail to meet the requirements. Remember
that languages like FORTRAN were designed to exploit
von Neumann machines. As such their computational
model assumes that a single program counter will step
through a program in the order of the statments within
it. This is not necessarily the best path. Because the
programmer is responsible for defining the order, he
must explicitly map the data to the physical resources
of the machine. This mapping is machine dependent,
and requires redefinition when the program is moved
to a new machine. Further, the choice of mapping
affects the compiler’s ability to exploit the available
parallelism. If the compiler cannot unravel the im-
plied behavior, it cannot remap the data and select
the best order of execution. Hence, the compiler is

at the mercy of the programmer, and must react con-
servatively when faced with potential conflicts. The
culprit, of course, is the assignment statement.

For example, consider the following FORTRAN ex-
cerpt:

Lo
1]

Foo(X)
= Goo(Y)

-]
|

Determining if these statements can execute in par-
allel requires a full understanding of both functions.
Because of COMMON blocks, they might share data.
Further, because of aliasing, some combination of X, Y,
A, or B might represent the same memory cell. Hence
the parallelism in this excerpt is not immediately obvi-
ous, and its discovery requires interprocedural analysis
or function expansion.

Functional languages, on the other hand, meet all
the requirements listed above and do not require anal-
ysis for the discovery of parallelism [1,11,13,14]. A
functional program is a collection of mathematically
sound expressions comprised of both intrinsic and user
defined functions. These functions are well defined and
determinaie. That is, they define a unique mapping

between their domain and their range. A function
passed the same set of values will yield the same results

regardless of the environment of invocation. This es-
tablishes referential transparency, which implies that
the evaluation of an expression, or the sharing of its
subexpressions, does not change the value it denotes.
Consequently, expressions are side effect free. The
concept of a FORTRAN COMMON block does not ex-
ist. In the absence of side effects, programmers cannot
see the target machine; the concept of data replaces
memory, and the concept of creation replaces update.
Further, in the absence of side effects, programs are
implicitly parallel.

Now let us return to the code excerpt discussed
earlier in this section, but this time in a functional
setting. Here Foo cannot access the value of Y as it is
not passed as an argument; and Goo cannot access the
value of X as it is not passed as an argument. Further,
Foo cannot access B, as it is not one of its arguments,
or alter Y, as it is passed by value. For the same rea-
son, Goo cannot access A or alter X. Since there are no
dependencies between Foo and Goo, they can execute
simultaneously. We did not require interprocedural
analysis to unravel their behavior. The required infor-
mation is local and implicit.

el

el

e

3 Sisal Overview

In this section we highlight the salient features of
S1saL 1.2 [16] and introduce its soon to be released
upgrade (S1sAL 2.0). In the interest of promoting the
upgrade, we use 2.0 syntax for all the examples in this
report. To begin the discussion, we present a SISAL
version of Gaussian Elimination without pivoting. It
solves a set of linear equations of the form Ax=B, where
A is a NxM matrix and x and B are Nx 1 column vectors.
Note the Pascal-like syntax and data types.

type Onel array [..] of integer;
type OneD = array [..] of double;
type TwoD array [..] of OneD;

function Reduce(piv:integer; A:TwoD;
B:0neD
returns TwoD, OneD)
let
% FORM THE MULTIPLIERS FOR THIS
% REDUCTION STEP _
mults := A[..,pivl/Alpiv,pivl;
in
% REDUCE ALL THE ROWS OF A AT
% INDEX i (row IS A VECTOR!)
for row in A at [i] do
nrow,
nB := if i = piv then
% REDUCE THE PIVOT ROW
row /Alpiv,piv],
B[il/A[piv,piv]
else
% REDUCE A NONPIVOT ROW
row-mults[i]*A[piv],
Bl[il-mults[il* B[piv]
end if
returns array of nrow,
array of nb
end for
end let
end function

function Gauss(N:integer; A:TwoD; B:OneD
returns OneD)
% APPLY N SUCCESSIVE REDUCTIONS TO A
% AND RETURN THE SOLUTION VECTOR
for i in [1..N] do
new A, new B := Reduce(i, A, B);
returns B
end for
end function

This example shows the two loop forms found in
SisaL. The loop in function Reduce defines paral-
lel execution while the loop in function Gauss defines
sequential execution. The absence or presence of re-
served word new distinguishes between the two. As
expected, only the sequential form allows the specifi-
cation of data dependencies across iterations (new A
in the example).

Other features of SisAL include reduction opera-
tions, records, unions, array modifiers, and streams
for non-strict computation. SISAL 2.0 includes several
other features, including higher-order functions, true
matrices, modules, element wise operations on arrays
and streams, and typesets [17]. Of these, higher-order
functions are the most important. They add an addi-
tional level of abstraction to the model, allowing func-
tions to be treated as data. The next most important
are typesets, which allow data types to be derived from
argument types and operations that transform types.
Both features are important in the development of li-
brary software.

4 Problems and Solutions

Earlier in this report we noted that functional lan-
guages, because of their semantics, meet all the re-
quirements of a parallel programming language. But
by raising the level of abstraction have we hindered
performance? We agree with Kuck and Wolfe that
performance is the bottom line. Until recently, poor
performance has been the strongest argument against
functional computing.

Functional languages are considered inefficient be-
cause of their side effect free semantics. For example,
without side effects an array update must define an
entirely new array. However in-place operations can
be automatically compiled into most functional pro-
grams without violating their computational seman-
tics (called copy elimination). The goal is to identify
the last consumer of an object and configure it for
in-place operation. In this section we illustrate both
the costs of copying and the power of copy elimina-
tion. To do this we consider the SiSAL programs used
in this report and present their performance with and
without optimization. Table 1 presents the program
suite itself. We defer further description of the indi-
vidual programs until the next section. For now, it
will suffice to say that they are all array and float-
ing point intensive, and exhibit parallelism. Table 2
summarizes their performance with and without the
copy optimizations. The times are in seconds and were

Table 2: The effectiveness of copy elimination analysis.

Alliant FX/80 Concurrent-Vector (5-ACEs) (IN SECONDS)
Program NO Optimization | WITH Optimization || Speedup [% Copies Removed
RICARD 91.0 1.8 [50x 99.5%
SIMPLE 1790.9 32.9 f 54x 99%
WEATHER 1195.3 13.6 | 87x 96.5%

v

Table 1: The program suite (C = cycles).

Source | Execution
Program Lines | Comments

RICARD 301 200C, 5x1315

SIMPLE 1550 | 62C, 100x100
WEATHER 2718 10C, 420km

gathered on the Alliant FX/80 at the Northeast Par-
allel Architectures Center at Syracuse University. We
quickly draw two conclusions from the data: The cost
of an implementation that naively copies data is truly
exorbitant, but the applied optimizations are dramat-
ically effective.

The reader can find a discussion of all the optimiza-
tions and their origins in [2,3,5,10,12,18,19]. Further
elaboration is beyond the scope of this report. The
point we wish to make here is that intelligent compi-
lation can eliminate copying.

5 Potpourri

In the next section we compare FORTRAN to SISAL
1.2 using the CRAY X-MP/48 located at the Open
Computer Facility at LLNL. This section enumerates
some important considerations, concerns, and caveats,
and describes the conditions of the study and the char-
acteristics of the program suite.

5.1 Code Quality

The SI1SAL compilation system currently generates
optimized C as its intermediate code and relies on the
local C compiler to finish compilation. This scheme
ultimately simplifies code generation and improves
portability, but it places the responsibility for code
quality on the resident C compiler. Although improv-
ing (motivated by the proliferation of UNIX), the qual-

ity of most C compilers remains poor. In the study
we used 0sC version 8.5.A to generate the C, and scc
version 2.0 to compile it. In general, we were im-
pressed with the quality of scc. Regardless, we do
not consider the current SISAL system to be of pro-
duction quality, although the technology is now ready
for industrial transfer. We used CF77 version 4.0.3 to
compile the FORTRAN.

5.2 Benchmarking

While there are too many variables to draw defini-
tive conclusions, benchmarking does reveal trends and
directions. However, it does not necessarily reflect the
true nature of production computing. We feel that this
report does provide an accurate comparison of SISAL
and FORTRAN.

Each SisalL code in our benchmark suite is a
transliteration of its FORTRAN equivalent. At no time
were the algorithms changed to improve performance.
However, the SISAL codes were written to exploit the
true data dependencies of the respective algorithms.

5.3 Levels of Improvement

The data presented in this report does not mea-
sure the degree or ease in which tuning could improve
both the SisaL and FORTRAN codes. We did not man-
ually annotate the FORTRAN to improve parallel per-
formance. However we did enable as many compiler
options as possible to yield the most effective execu-
tion. Table 3 shows these options. In general, since
most performance tuning involves a restructuring that
modifies the fiow of data through a computation, we
would expect that SISAL would be easier to tune.

5.4 Library Software
Although we only evaluate SISAL’s performance in

this report, it is important to note that in our work
we have addressed the issues of library software and

r'a)

Ny

Table 3: Compilation options for FORTRAN.

CRAY X-MP/48

Unicos 5.1

cf77 4.0.3

Desired Execution Mode | Options

Vector Only

-Zp -Wd“ev68 -dci”

Concurrent Only

-Zp -Wd“ec681 -dv”

Concurrent-Vector

-Zp -Wd“ecv68i”

mixed language programming. These concerns are im-
portant in the complete evaluation of a programming
language and its ability to perform in an industrial en-
vironment. We have implemented a bidirectional in-
terface linking S1SAL, FORTRAN, and C, and as a feasi-
bility study, several researchers at LLNL are working
to exploit this interface and migrate several produc-
tion codes into SisAL. For this report, we did not use
the interface to access Cray’s library software to boost
performance.

5.5 Data Gathering

The resident operating system on the OCF CRAY
X-MP is Unicos 5.1. The runs were made at off hours
and were repeated to insure timing accuracy. We did
not accept a parallel run unless we received at least
95% of the machine for the entire execution.

5.6 The Program Suite

We introduced the program suite used in this report
in Section 4, but deferred discussion of the individual
programs. The smallest code in the suite is RICARD,
a production code developed at the University of Col-
orado Medical Center [6]. RICARD simulates exper-
imentally observed elution patterns of proteins and
ligands in a column of gel. For the comparison we ran
the first 200 of the 40,000 time steps required to com-
plete a simulation involving 5 proteins and a column
of 1,215 levels.

The second largest program is SIMPLE?, a La-
grangian hydrodynamics benchmark developed at
LLNL [8]. This program simulates the behavior of
fluid in a sphere. Here we ran a 100 x 100 problem
requiring 62 time steps.

The last and largest program is WEATHER ([7].
This code, developed at Royal Melbourne Institute of
Technology, is a one-level barotropic weather predic-
tion code. The Department of Meteorology at the Uni-
versity of Melbourne provided the original FORTRAN,

1Different versions of SIMPLE exist. We used version 2.1 for
this report.

written and tuned for a VAX uniprocessor; as such,
the code is explicitly scalar?. Differing from the first
two programs, which both occupy a single source file,
WEATHER occupies 33 files and manipulates com-
plex data. For this code, we timed the first 10 cycles
of execution for a 420 km grid.

The Alliant FX /80 data we provided in the previous
section reflects double precision arithmetic (64 bits).
The data presented in the next section reflects real
arithmetic (64 bits on the CRAY).

6 Performance and Analysis

Tables 4, 5, and 6 present the performance data
for all the runs. The first is for vector operation ex-
clusively; the second is for concurrent operation ex-
clusively; and the last is for concurrent and vector
operation combined.

The data show two trends. First, the dispar-
ity in parallel performance between SiSAL and For-
TRAN is proportional to.the complexity of the pro-
gram. That is, as the complexity of the application
increases so does SISAL’s predominance. Observe the
four processor concurrent-vector execution times for
SIMPLE and WEATHER: Table 6. The SIsAL ver-
sion of WEATHER, which is the most complex pro-
gram in the suite, yields the best parallel performance
improvement over FORTRAN (a speedup of 7.3). The
reason for the difference was the lack of interproce-
dural analysis combined with over-vectorization. For
SIMPLE, the second most complex code, the For-
TRAN compiler was unable to unravel the true behav-
ior of the equation of state computations found in the
inner loops. Thus the SisaL version of SIMPLE ran
2.5 times faster than FORTRAN on four processors.

Second, the quality of the scalar code emitted by
SCC is in its current state inferior to cF77. For ex-
ample, the non-vector execution of RICARD ran 34%
faster in FORTRAN than SisaL. This, unfortunately,

2Personal communication with Martin Dix, CSIRO Division
of Atmospheric Research, Australia.

Table 4: Performance data for the program suite: vector only.

CRAY X-MP/48 Vector (IN SECONDS)
I One CPU
Program | Sisal | Fortran
RICARD | 0.39 0.34
SIMPLE || 13.82 13.03
WEATHER. || 5.94 13.40

Table 5: Performance data for the program suite: concurrent only.

CRAY X-MP /48 Concurrent (IN SECONDS)
v One CPU Four CPUs
Program Sisal | Fortran [Sisal Fortran
RICARD 2.19 1.44 0.70 0.47
SIMPLE 25.18 | 20.57 | 17.80 16.33
WEATHER || 8.74 7.33 2.58 6.08

Table 6: Performance data for the program suite: concurrent-vector.

CRAY X-MP/48

Concurrent-Vector

(IN SECONDS)

One CPU Four CPUs

Program Sisal | Fortran || Sisal | Fortran
RICARD 0.39 0.35 0.14 0.11
SIMPLE 13.52 | 13.49 4.90 12.37
WEATHER || 5.93 13.92 1.84 13.51

e

illustrates one of the few drawbacks of using C as an
intermediate form.

In general, the performance data speaks for it-
self. For the concurrent-vector execution of RICARD,
SISAL is competitive. For the concurrent-vector exe-
cution of SIMPLE and WEATHER, SISAL is superior.
However, there remain two unanswered questions:
memory consumption and compilation time. Most
skeptics claim that functional languages use memory
profligately. In an industrial setting, where every last
byte counts, this would prohibit functional computa-
tion altogether—regardless of performance. Table 7
shows the mean memory image size of the concurrent-
vector runs. Only the SisaL run for WEATHER shows
a discrepancy, which we are still investigating. How-
ever, the mean memory image for the SISAL version of
RICARD is smaller than FORTRAN.

Another complaint against functional languages
concerns compilation time. Table 7 shows the compi-
lation time for both languages (for concurrent-vector
execution). In general, it appears that the SISAL com-
piler can generate optimized C code in about the time
it takes to compile FORTRAN into executable code.
This is reasonable. The use of C as an intermediate
form would not be the correct choice for a production
compiler. But the data does show that the required
optimizations for SISAL are cheap. In fact, their cost
is linear in the number of operations in the program
(see [9]).

Of course there is room for improvement. All SIsAL
programs automatically reclaim memory during exe-
cution, but the costs can be high. However, the com-
piler could reduce these associated costs. For exam-
ple, although we are eliminating most of the inter-
mediate aggregates and unnecessary copying in SISAL
programs, we are not currently optimizing the code
required to allocate and deallocate arrays between cy-
cles of execution. In most situations, these repetitive
operations are unnecessary and the allocation of stor-
age can take place once, before the loop begins exe-
cution, and storage can be freed after the loop com-
pletes. We refer to this as aggregate preconstruction.
Profiling the three SISAL programs, we found, respec-
tively, that 9%, 12%, and 18% of the single processor
concurrent-vector execution times involved memory
management. Note that the disparity between SISAL
and FORTRAN for RICARD is just this overhead. We
are currently attacking this problem and expect sub-
stantial improvements in both sequential and parallel
performance of all SIsAL programs.

We also expect further improvement when we add
unswitching and loop distribution optimizations to the

SisaL compiler [20]. The first optimization identifies
invariant if tests within loops and inverts these com-
putations to hoist the conditionals. For example,

for i in [1..n] do
V :=if (X "= 0.0) then
Alil/Xx
else
0.0
end if;
returns sum V
end for

becomes

if (X "= 0.0) then
for i in [1..n] do
returns sum A[il/X
end for

else
0.0

end if

The second optimization splits loops to isolate non-
vector computations. For example, in the following
loop the eos call prevents vectorization, although it
does not inhibit concurrentization:

for 1 in [1m..1x] do
eosV := eos(eosc,tmplk,1],rhol[k,1]);
:= max(tmp[k,1],tflr);
tmpR := abs((newV-otmplk,1])/otmplk,1]);
returns max(tmpR),
array of eosV,
array of newV
end for

Loop distribution would result in two loops (the first
concurrent and the second concurrent-vector):

for 1 in [Im..1x] do

eosV := eos(eosc,templk,1],rholk,1]);
returns array of eosV

end for

for 1 in [1m..1x] do

newV := max(tmp[k,1],tflr);

tmpR := abs((newV-otmplk,1])/otmplk,1]1);
returns array of newV, max(tmpR)
end for

7 The Evidencé Mounts

In this report, we have attempted to rekindle an
old debate: Is our reliance on FORTRAN necessary,

Table 7: Miscellaneous data for the program suite: concurrent-vector.

CRAY X-MP/48

Concurrent-Vector

(Unicos 5.1)

Memory Image Size Compilation Time
| In Kilowords In Seconds
Program || Sisal [Fortran Sisal to C, C to a.out | Fortran to a.out
RICARD 93.8 113.4 6.6, 12.0 12.57
SIMPLE 544.2 406.0 42.2, 66.1 35.9
WEATHER | 566.0 163.9 121.9, 96.3 67.0

or can we transcend the imperative tar pit and reach
a new level of abstraction? The biggest concern to
date has been performance, but recent advances by the
functional language community have answered these
concerns. The data presented in this report is one such
example. Another is the work of Boyle at Argonne
National Laboratory who demonstrated parity with
FORTRAN using Lisp [4].

We do not claim, however, that S1SAL and Lisp are
the successors of FORTRAN. What we do claim is that
the successor should be functional, and performance is
no longer an issue. Tomorrow’s parallel machines will
not only provide massive parallelism, but will present
programmers with a combinatorial explosion of con-
cerns and details. The imperative programming model
will continue to hinder the exploitation of parallelism.

In summary, the functional paradigm yields several
important benefits. First, programs are more concise
and easier to write and maintain. Second, programs
are conducive to analysis, being mathematically sound
and free of side effects and aliasing. Third, programs
exhibit implicit parallelism and favor automatic par-
allelization. Fourth, programs can run as fast as, if
not faster than conventional languages. The time for
change is now.

Acknowledgements

Thanks are due to the staff and clients at both the
Open Computer Facility at LLNL and the Northeast
Parallel Architectures Center at Syracuse University
for their patience while we tuned the compiler and col-
lected the data. We also wish to thank Rod Oldehoeft,
John Feo, Richard Wolski, and Tom DeBoni for read-
ing and improving this manuscript. Finally, thanks
to Jim McGraw, David Kuck, and Michael Wolfe, as
their debate in 1984 made this report possible.

This work was supported by the Applied Mathe-

matical Sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, by Lawrence
Livermore National Laboratory under confract No.
W-7405-Eng-48.

References

[1] Arvind and R. Nikhil. Executing a program
on the MIT tagged-token dataflow architecture.
IEEE Transactions on Computers, 39(3):300-
318, March 1990.

[2] Jeffrey M. Barth. A practical interprocedural
data-flow analysis algorithm. Communications of
the ACM, 21(9):724-736, September 1978.

[3] A. Bloss. Update analysis and the efficient im-
plementation of functional aggregates. In The
4th Inlernational Conference on Functional Pro-
gramming Languages and Computer Architecture,
pages 26-38, 1989.

[4] J. Boyle and T. Harmer. A practical functional
program for the CRAY X-MP. Technical Report
MCS-P159-0690, Argonne National Laboratory,
1990.

[6] D. C. Cann. Compilation Techniques for High
Performance Applicative Computation. PhD the-

sis, Colorado State University, Computer Science
Department, Fort Collins, CO,. 1989.

[6] J. Cann, E. York, J. Stewart, J. Vera, and
R. Maccioni. Small zone gel chromatography of
interacting systems: Theoretical and experimen-
tal evaluation of elution profiles for kinetically
controlled macromolecule-ligand reactions. An-
alytical Biochemistry, (175), December 1988.

[7] P. Chang and G. Egan. An implementation of
a barotropic numerical weather prediction model

-

™

A

(8]

[

[10]

{11]

[12]

[13]

[14]

[15]

[16]

[17]

in the functional language SISAL. In Proceed-
ings of the SIGPLAN 1990 Sympostum on Princi-
ples and Practice of Parallel Programming, March
1990.

W. P. Crowley, C. P. Henderson, and T. E. Rudy.
The simple code. Technical Report UCID 17715,
Lawrence Livermore National Laboratory, Liver-
more, CA, Februrary 1978.

J. Feo, D. Cann, and R. Oldehoeft. A report on
the Sisal language project. Journal of Parallel
and Distributed Computing, 10:349-365, Decem-
ber 1990.

K. Gopinath. Copy Elimination in Single Assign-
ment Langueges. PhD thesis, Computer Systems
Laboratory, Stanford University, Stanford, CA,
1989.

P. Hudak. Conception, evolution, and applica-
tion of functional programming languages. ACM
Computing Surveys, 21(3):359—411, September
1989.

P. Hudak and A. Bloss. The aggregate update
problem in functional programming systems. In
Twelfth Annual ACM Conference of the Princi-
ples of Programming Langueges, pages 300-313,
January 1985.

J. Hughes. Why functional programming mat-
ters. The Computer Journal, 32(2):98-107, April
1989.

B. J. MacLennan. Funclionel Programming
Practice and Theory. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1990.

J. R. McGraw, D. J. Kuck, and M. Wolfe. A de-
bate: Retire Fortran? Physics Today, 37(5):66—
75, May 1984.

J. R. McGraw, S. K. Skedzielewski, S. J. Al-
lan, R. R. Oldehoeft, J. Glauert, C. Kirkham,
W. Noyce, and R. Thomas. SisaAL: Streams and
iteration in a single assignment language: Refer-
ence manual version 1.2. Manual M-146, Rev. 1,
Lawrence Livermore National Laboratory, Liver-

more, CA, March 1985.

R. R. Oldehoeft, D. C. Cann, A. P. W. Bohm,
J. T. Feo, and D. H. Grit. SISAL reference
manual languege version 2.0. Technical Report
UCRL-JC-104008, Lawrence Livermore National
Laboratory, Livermore, CA, December 1988.

[18]

[19)

20]

J. E. Ranelletti. Graph Transformation Algo-
rithms for Array Memory Optimization in Ap-
plicative Languages. PhD thesis, University of
California at Davis, Computer Science Depart-
ment, Davis, California, 1987.

S. K. Skedzielewski and R. J. Simpson. A simple
method to remove reference counting in applica-
tive programs. In Proceedings of CONPAR 88,
September 1988.

M. Wolfe.
percomputers.
sachusetts, 1989.

Optimizing Supercompilers for Su-
MIT Press, Cambridge, Mas-

~?

